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Abstract

Consider a communication channel without feedback, with transmitted

signal A(X), and with additive Gaussian noise N. The information capacity

of this channel is obtained subject to the constraints EIIA(X)Ilw £ P, where

[ii[ can be regarded as the RKHS norm of the stochastic process W. The

class of admissible processes W includes all Gaussian processes having in-

duced measure equivalent to the measure induced by N.
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Introduction

This paper considers the information capacity of the Gaussian channel without

feedback. The channel input is a sample function from a stochastic process X; it

is encoded into the signal sample function by a coding operation A; the channel

adds a sample function from a Gaussian noise process N (independent of X); the chain-

nel output is then a sample function from the process Y =A(X) + N. The quantity

of interest is the information capacity

C = sup I[X,A(X) + N]

Q

where I [U,V] is the mutual information of the processes U and V, and Q is aset

of (AX) defined by appropriate constraints.

Let I. denote the reproducing kernel Hilbert space (RKHS) of N; under the

constraimt El IA(X) 1 1N : P, a complete solution to the information capacity problem

is given in [1]. However, there is also considerable interest in the capacity prob-

lem using constraints of a different type. The following constraint has been ex-

amined in special cases in various publications [2], [3], [4], [6]: Q is the

set of all (A,X) such that EIIA(X)l 12 5 p, where W is a second Gaussian process.

There are various motivations for this definition of Q. For example, if W is the

Wiener process on [0,T], as in [2], and [A(X)]t -f V Sds, then IIA(X)IlW

f V2 Vdt. This is the usual power constraint. A more general motivation is that
0

in many applications one may not know the precise covariance of N. It is then of

interest to calculate upper and lower bounds for the capacity, over all Gaussian

processes N whose induced measures are mutually absolutely continuous to the inca-

sure induced by some "most likely" (or reference) Gaussian process W.



page 2

A complete solution is obtained here for the capacity problem using the

above definition of Q. In a subsequent publication, the results obtained here

will be applied in an analysis of the feedback channel of [2].

Mathematical Structure

The channel model is defined as in [1]. The channel noise N is represented

by a measure u N on the Borel a-field of a real separable Hilbert space H2 . The

message X is modeled by a measure p on a real separable Hilbert space H1  The

inner product on H. is denoted by <',>" A: H - H is a Borel-measurable coding
*1 1* 1 2

function. i is a strong second order measure on H2  I i xi (x)<). RN and Rw
denote the covariance operators of p N and ij The following assumptions are made.

1/2 1/2
(1) RN = RW (I+S)Rw1 , where S is a compact operator in H2, and S does

not have -1 as an eigenvalue. Without loss of generality, it is assumed

that range(R N) = H2.

(2) The admissible set Q is the set of all (A, x) such that

'HI} IRw 2A(x)II2 dpX(x) : P.

-I

The definition of Q given in (2) implies that 11 * A is strong second order.

Since we can (and do) assume that UN' ' and X A-  each have zero mean, the con-
.-1/2_ _-1/2 i h o

straint in (2) is equivalent to trace R- RA(X)R1 s P, where RA(X) IS the co-

variance operator of A(X). Note that R'1 /2 exists because of assumption (1). If
W

range(RN) # H2 in a given problem, one can replace H2 WLOG by range(RN). Alterna-

tively, one could use the original H2 and apply the constraint
222 61 <A(x),Zn>2 dux(X) P. where Rw = 6 n~n * Zn, with each 

6n > 0 and

{Zn,nkl} an o.n. set.

Much of the following analysis will hinge on the properties of the strictly

negative eigenvalues of S. These oigenvalues will be designated as {Xn , nkl), I
-- .-.. - ... _ I m n - -- ]I I I i I
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X S An with {en , nl) associated o.n. eigenvectors. Of course, depending onn n+l' nP

the particular RN and RW, the set {Xn, nal can be empty, finite, or countably

infinite.

The joint measure on H1 x H2 representing message and channel output is

; XY with U the measure representing the channel output process Y. They are

defined as in [1]:

IJy (B) P X ® PN { (x ' y ) : A(x) + y E B)

iXY(C) P 0 ®  N x ' y ) : (x,A(x) y) E C)

where PX aN is product measure on HI x H2 (all measures are defined on the usual

Borel a-fields, as in [1]). With these definitions, I[X, A(X) + N] =I[pXy],

where I[Xy] = 00 if XY is not absolutely continuous with respect to pX a 0Y'

and otherwise

= f log doX-- (xY)] dixy(XY).

Two results proved in [1 ] will be central to the following analysis. The

first is that for any fixed covariance operator R of the signal process, the
A (X)

information I(I y) is maximized by choosing A(X) to be Gaussian [1; Lemma 6].

The second is that if A(X) is Gaussian with covariance operator

R a [ R'1 2 v i* R1/2
%AX N i "N Vi

where I ai < - and {vn , nl} is an o.n. set in H2, then I[jxy] =(1/2)1 log[l.an]

[1, pp. 83-84].

Finally, it is noted that I lR l/2xI 2 =- lx Iw can be viewed as the norm of
x in the RKHS defined by the kernel rw (t,s): H2 x H2 *IR, rw (ts) -<Rwt,s> 2.

rw actually determines a RKHS of real-valued functions on H2; however, this RKHS is

a subset of the bounded linear functionals on H2, and thus can be regarded as a

subset of H2,
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Main Result

The solution for the information capacity problem defined in the preceding

section is given in the following theorem.

Theorem. Let C = sup I[v Xy], where Q is defined by assumptions (1) and (2)

Q
of the preceding section.

(a) If H2 is finite-dimensional, then

-K

c= lognFil
n=o1 K(l~y n)

L K
where K is the largest integer such that Yn + P > KYK' and

1

'1 ! -2 5 ... is the set of all eigenvalues of S.

K
(b) If H2 is infinite-dimensional, {X n, nl) is not empty, and X n P >KXK

for all negative eigenvalues XK of S, then I 'xn' 1 P and
n

C = 4j Ilog +iT 112

(c) If H2 is infinite-dimensional, {Xn' nal} is not empty, and there exists a
K

largest integer K such that X + P > KXK and XK < sup{Xn n2:l then1 1

K
P+1 (l+)X

c 4 log ial

nal K(l+X n )

(d) If H2 is infinite-dimensional, and {fn n il) is empty, then C * P/2.

In (a) and (c), the capacity can be attained. In (a), it is attained using

a Gaussian signal with covariance

R K 112 1/2RA(X) a nln vi] 0 [Rw vi].
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K

where {vi 9..,vK) is an o.n. set, Sv yv, and T) n* " ' K "n

The capacity in (c) is attained with a Gaussian signal having covariance of the

same form as that for (a), but with yi replaced by Ai and vi replaced by ei ,

i=I,...,K.

In (b) and (d), the capacity cannot be attained, except in (b) for the special

case where P a - nA.

In (b) and (c), the capacity is strictly greater than the capacity obtained

using the constraint Ex IA(X) I1= I IR-1/2A(x) I2 d _ x):5 P; in (d), the capacity

is the same. In (a), the capacity is strictly less than that for the constraint

2
E PI iA(X)II N S P if all yn a 0 with y'K > 0; strictly greater if all yn - 0 and

YI < 0; and no general statement holds if 'yK > 0 and y1 < 0.

Proof of the Main Result

The proof of the Theorem will be given after having obtained several lemmas.

Lemma I Let N a I be fixed, and suppose {p n, n=l,...,N} is a set of strictly pos-

Ntv sclas p. ;. . ,I isastoPtitypsitive scalars, p1  2 N'" Let A c RN be the set of all x such that xn a 0 for

k k N N
n=l..., N, and n x s II On for k=l..., N. Then sup ll[l+xn] = 1+n.

1n 1 A l 1

N N

Proof Define GN: IR -JR by GN( A) = log[l+xn]. It is sufficient to show that
1

GN( ) < GN(P), subject to the constraints

-x n  0n-l .... N (Cl)

k k
log xn - log pn : 0 k-l,..., N (C2 ).

1

The constraints C1nC2 define a convex set in ItN, and GN is concave on IR

N
Thus, one has the problem of maximizing a concave function over a convex set in R



page 6

with concave and differentiable constraints; by Kuhn-Tucker theory [7] any

solution to this problem will define a global maximum over the set A. A solu-

NNtion is any x* inlR satisfying the following set of equations for some y in RN

such that yi 0 and i 5 0 for i=l,..,N [7]:
1

- in x 'k = 0, n=l,..,N (SI)
n n k~n

Y x* 0 and -x* 5 0, n=l,..,N (S

6k[1 log X* . log pn = 0m n n

k k kzl,..N (S3log x*- log n 5 "1 1I

The system of equations (S), 2 ($3) is easily seen to be solved by taking

N

= n' un = 0, and k n/in for n=lpo .siN. The fact that this solu-
k =n

tion gives 6k f 0 for all k=l,. .,N follows by induction on N - k+l, using

n 9 n-l for 2 n N. 0

2 2 2
Leun 2Let {Xn, nzi1 be a suinmable sequence, with Xn Xn+I .* Suppose that

Sievauespand operatoS i scstrictlypositive Thfoany fii te N lst ndany

o.n. set {Ul,. .,UNI,

1 1 n

wreA I , A .. are the negative eigenvalues of S.

1 2

Proof Using the inequality I1(1+s)1/2u112 uIj2S2unIlv it suffices
N 2 -1/2 i2 N 2 .

to show that (I S112S "[1+xn('+An J

1 1so
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Let {un el) be any fixed CON set in H2. Define X =ln IlUn 0 un ' The previous

inequality will be proved if one shows that

N N1 2  2 [1 2( 1ill+ l(I S)- /X u n'12 P+ ]]1xn (I+Xn)-]
1 UI2 n n

By a result of Horn [5],

k 12  2 k 2-1/4p
l j(i+S) 1 2X U n12 T (p)lxn

for all k : N and any fixed p > 1, where {Tn(p). p l} are the eigenvalues of

X/ (I+S) X and T (p) a T n (p). This follows from the fact that j

(I+S)-1/2x 1/2p is compact, a- is XI - /2p = Ix11- / 2p u U,n = n  n •

Let a > 0 be given. For sufficiently large p, (l+a)(I.S)- >X /2 (I+S)- X/ 2

k k
and then Rl T (p) < (l+C) TI (l+Xn)-, so that

n 1
k 2k
k1 1 + n-1/2 (l+a) kk = 1,2,...,N. Thus, for

n12 i ni1 1
k k

all o > 0, I I,(I+S)- 1/2 XU 2 < (1n')k giving
1 1

k-1/2k -12
1 (l+S)-/XUn112 -< T(l+X n )  xn , for k = 1,2,,.,N. Applying Lemma 1, this1 1

N -1/2 2 N 2 l
yields f[1+ (I+S) XUnI2] 5 [lx 2(1+X )].

1 1 n n

Lemma 3 Suppose that all the eigenvalues {Xn, ntl} of S are strictly negative,

A1 1 X2 5 ..... with Se= Xiei, I, and {ei, ikl) an o.n. set.

K
(a) If there exists a largest integer K a 1 such that A n + P > KA then

1 Kn

K

K 1I3 (l.xi) + p
C = 4 lg il 1 .

The capacity can be achieved; it is attained with a Gaussian signal having qo-

variance operator

KAx 1/2 oi* 1/2RAM Ti
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(l.Xi)- K

where T. +P- K.) i=l,..,K.
I K n=Il n

This result includes the case when H2 is finite dimensional (so that K s dim(H2)).

Moreover, this result is also obtained when one adds the additional restriction

that support o A-1) < M < -. With this restriction, K = M if X A + P>MXM;1n

otherwise there exists K < M such that the above expression is the capacity.

K

(b) If there does not exist a largest integer K such that X + P > KXin K

then X I ,n]-< P, and
n

CC
C log + (P + I n).

n=l IT -1n

Capacity can be attained only if P = - n Xn; it is then attained by a Gaussian sig-
00 -XA.

nal with covariance R = Ii U*e] a [&*ei] where T. = -. If P > -Z Xn
AX 11' LNeJ [RNV eJ l+X.i

then the capacity is the limit of the mutual information for a sequence of Gaussian

signals ( AX), with covariance R AX = [R7U*eiI 0 [R N e ] and

(l+X.) N M
TM -- 1 U Xn + P - MX) i=l,..,M.

1 M

Proof
CO

From the results of [1, pp. 83-84], I[pxy] 0 log[l+Tn] when jx  A-1
nhnl

is Gaussian with covariance operator

1/2 u 1/2
RA(X)z i'n[N Un] 0 [RN u]

n I

with fun, nal) any o.n. set in H2. By Assumption (1), /2 "W (I S)Iu*

with U unitary. Thus

EllII/ 2A(X)112 - Trace 1 / 2 R -1I/2

a Trace (IS) 4 U*R;RI RN* (+S$)

* I(I+S) V'Uun112
n n l .
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Moreover, for any choice of covariance operator RA(X), the information is maximized

if PX 0 A is Gaussian [1, Lemma 6]. Thus, one can assume that pX A is

Gaussian. The capacity problem now reduces to finding C = sup 4 F log[l Tn],
QV nn

where Q, is the set of all QTn), (Un) } such that n 0 for n > 1, T <
n

{un , nl1) is an o.n. set, and I TnII(I+S)U*un112 < P.
n

We rewrite the preceding expression as

C = sup I log[1 + X I IC+S)U*un11 2].Q1 n n 2

where x 2 Tm lie I12 . Since {xn , nl} and {Tn, nal} are summable, and

2 2{un l} is to be selected, one can assume WLOG that xn > xn+ I , ntl. From Lemma 2,
2for any such choice of {x , l<n<M},n

M 2 2 M 2
M log[l + xnH(I+S)-U*u 112] _< 1 log[l + x 2 1+X
1 n n 1

We will maximize the right side of this inequality for fixed M, and show that the

maximum can be attained by {x2 , l:n<M} such that I x2 = P and x2 > x2  for
1 n n -n+l

n=l,.., M.

RM by =N-1For fixed M > 1, define fM:I R  IR by fM() =log[ + yn(1+X We
n=l

seek to maximize f (y subject to the constraints -

MI
g(X) Yn " P <5 0,NI

hi (X) E -Yi 5 O, i=1,..,M,

This is a constrained maximization problem. Since log(l + ay) is concave over

{y: yaO} for any a > 0, the function fM is concave over the convex set

(Z inRN: Z i k 0, i-I,..,M}. Moreover, each constraint function is concave.

Thus, any solution to this problem will define a global maximum for fM [7]. In

order for X* to be a solution, it is necessary and sufficient that the following

set of equations be satisfied [7]:
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11.l~ i  -Y. 0 i=I ... M (1)

M M
pX y* :P0, [ -P] = 0 (2)n IYn

1 1

• S 0, Yyt = 0, i=l, ..,M (3)

for some set of non-positive real numbers {By 1,..YM

We first attempt to obtain a solution y* by setting y1  = 2 = 'M = 0.

This requires

1
l+y +xi -, ~ i=l,..M; thus

M M -1
y + (l Ai ) = -M( - , and

1 1

I i 1

n M - ( n+kn)

for n=1,2, .. ,M. This definition of y* and constraints (3) require that

M M
SYi + 1 (+i) X M(1+n), n=l, .. ,M;

1

this inequality is satisfied for all n 5 M if and only if it holds for n = M. Also
M

8 = -(I+Y?+A i ) implies $ < 0, so that Y! = P by constraints (2). Thus, if
M M 1 1

P + 2 MXM then an optimum solution is given by
IA M

M
P + 1X MXi

1 M -, i=l,..,M.

If there exists K M such that

KP + X Ii  K Kx

1

K+ 1p X i <. (K+ I ) X K+ 1 1
1 K.1'

. .. .
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then constraints (1)-(3) are satisfied by choosing

K

8 = -K[P + K + Ail

Yl Y2 " YK 0

K
y =

yi=0, i>K
K

yi = K'I[P +  A -K g.] 9 i<K
, n=l~iI

K -1 -1
Yi = -K[P + K + An] + (+Ai)- i>K.

Thus, under the assumptions of (a),

sup I log[1 + x ( l+X ) ]= I log I A n)

Q"v n n n=1

where !Z' = {(x): X2 < P). As already noted, when pX A- is Gaussian with
1

covariance operator R = 1 R 112 U [R 112 {un  n-l} an o.n. set, then
A(X) n7 N~R n~ [N n n~

[ = £ log[l+TnI _ .q log[l + x (l+An)-]n=1 n=l n n

if jI2IS)iU*Unj 2, x 2  X 2ixn  "n11I 2' n n~l"

Choosing u = U en, nzi,
2n 1  K

X2 = K [ P + = A.- KA] n=l,..,K

x= 0, n>k

one obtains (a) immediately if H2 is finite-dimensional. If "2 is infinite-dimen-

sional, then (a) is obtained as above by taking M sufficiently large, and noting
M

that 1 log[l + T ] is a non-decreasing function of M if Tn Z 0 for n a 1. The

proof of (a) under the additional constraint that support (u xa A- ) s M < can

be obtained from the preceding proof and the results of [1, pp. 83-84].
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K
Suppose now that X n + P > KX K for all K a 1. If P < Ix n 1, then

1 nK

there exists K a 1 and A > 0 such that P + = -A. Thus,

K

IxK+I > ( I / K)[ 'Z Xn - P] = A/K.
I

Assume I K+pI >(I/K)A for 1 -p N.

Then

[K+N 1 1f K. 1Ix KN+1
1 > T- ] K.N -L n]K 1N n K+I

so that

KxN > KIN [L +(N/K) A] = A/K.[K+N+I l;

Hence, I > A/K for all p a 1, which contradicts X n 0, proving

I>,n 1 _< P.
I

A lower bound on C under the assumptions of (b) is now obtained from the

proof of (a), by taking CK to be the value of C under the additional constraint

that support (pX ° A- ) has dimension 5 K, so that

KK

C log 
1  *n-I q x--

and so

ClimC = 4 log[(l Xn) ] + (P + Xn).
K K1

To see that lim CK is an upper bound for C, suppose that lim C < C. Then there
K K

exists a Gaussian UX 0 A 1 with covariance operator

RA(X) n '1R 2 ] * 1/2Un ]  with

Sn'llcI(S)4U*qll2 I P, and for some finite M

II; 1
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M
4 J log[1 + Tn] > ir CK.

1 K

However, as already seen, no selection of {(Tn), (un)) satisfying the above condi-

tions can be such that

M
;1 log[1 + Tn] > CM.

1

This contradiction establishes (b). The fact that the capacity in (b) cannot

be attained follows in the same way. 0

Lemma 4 Let C(N) sup 2[RNxA]"{(A,11x ): Ex I RN /A(X) 1 12 :< P}

(iX

(a) If S has only non-negative eigenvalues, then C 5 C(N).

(b) If S has only non-positive eigenvalues, then C L> C (N)*

(c) If H2 is infinite-dimensional and all eigenvalues of S are non-negative,

then C = C(N)= P/2.

Proof (a) Here 1l(1.S)-ll 1 1, and so JJR I12A(x) 12

11(1+s)- 11, IRw1 / 2A(X) 1122  IIRw1/ 2A(X) II
12 1/2,-,2

for all A(X) in range (/N ) Hence E IP wl 2 A(X) I2 5 P impliesX

E -IR'/2A(X) 2  P, so that C is obtained by a supremum over a smaller set,

yielding (a).

(b) In this case 11I1S11 S 1, and so

El IIRN" 2A(X) 2 S P implies E XIRw1
/

2A(X)II .
lx 2 iX 2

(c) From (a) and [1, Theorem 2], C < P/2. For fixed n k 1, let,'P A{Xn) be

Gaussian with covariance R n n n [R I
A (X -R n n NI
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C
a CON set in H2. From [1, Theorem 1], I[pXn.n] =(n/2)log[l + 2nn] Define (Cn) by

2 n2n n

C = nP[X I H(I+S),U*. -1A Then E I " 1/2 In-- P, so (A Q.
1 1 -X

n
n .4 2

The fact that (1/n)I II(I S) U*u 112 _ 1 follows easily from the fact that
i=l 1

Il1s1/2ui I2 ._ 0. Thus, Cn "' P, and so I[ X y] P/2, showing C a P/2. 0
n n

Proof of Theorem

(a) is proved exactly as (a) of Lemma 3. (d) is contained in Lemma 4.

To prove (b) and (c) we identify two possibilities for each: (1) S has a finite set

of M strictly negative eigenvalues; (2) S has an infinite set of strictly neg-

ative eigenvalues. We prove only (b) and (c) for case (1); the proof for (2) is

similar but simpler.

First, we note that the capacity is at least C, as given in (b) and (c).

This follows immediately in (c) using a Gaussian pAX with covariance as specified

for (c) in the theorem. For (b), this is shown by using a sequence of Gaussian
k .

signals (pAX) having covariance H

M .P + k
k M 1 1/2 1/2 _ ____112 1/2
AX R e RN  ei + k-M-l k N ui N ui. whereR--N N R..

M+ 1

S e. Xiei, X.< 0, Su. = y0u, y. > 0, for i-l,..,M; j-M+l,...,k; and {eI ... m ,1 1 1 k M M

UM+1',.uk' is an ON set. As k -v, [AX] - log[1-T-] + j(P + Ad - C.
n

Thus, to prove (b) and (c) when S has only a finite set of strictly negative eigen-

values, it suffices to show that the capacity is S C as given in the theorem.

Suppose then that the assumptions of either (b) or (c) are satisfied, and that

S has strictly negative eigenvalues A S A 2 s.s 9 " Suppose that the true capacity

is greater than C, as given by (b) or (c). Since the capacity is the limit of
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(INky for a sequence (p k ° Ak ) of Gaussian measures, there exists [1]x

a covariance operator R such that R = T tR 1 2 ui R 1/2 UP Tg[1eT.] > C,TjN j®N '# og >,

{u., jail an o.n. set, and I T.II(I+S)iU*u 2 p P P. We can assume that2 = j 2 1

J > M. Let T: H2 - H2 be the unitary map defined by Tvj=U*uj, where {v., j l)2 2

are the eigenvectors of S. Defining x2  T i J(I+S) U*u j12, one has that

log[1 + Ti] <  log[1 + x j (I+S)- Uu 2

21log[l + x 11(1+s)- u*Tvj112).

2 2
We can assume that x a x +1 , j=1,.., J-1; from Lemma 2,

J M 2 -1
I log[1 + Tij !5 1 log[1 + x. (l+e -) J

+ J log[1 x2IIuS)1/2Tv II1.
M+l i

J 2 -1 eth

Define P x2. Then x = P 1 P; the eigenvalues of (I+S)-  are theDefine Yl= E M+l j  -Pl

same as those of T*(I S) T, and thus Lemma 3 and Lemma 4(a) yield

J K i+K) + P
J 1_ _ 1+ P

I log[l + -] C0 (PI') - log K(1- P l'"

We maximize C0(P1') with respect to PI'" The derivative is non-decreasing for

K

increasing P1
1 if A + P * 0. This is satisfied if K < M; taking P1 arbitrarily1

close to P (J . ), one obtains part (c) of the theorem. If K N, then
d ) >. i A s d

O0IP' < - d ' < if l I , and by continuity
N

of COP C0 (P1
9) I CO(-I Ai), proving (b) of the theorem.

The remaining parts of the theorem can be obtained from the proof of Leona 3,

md from L4=8 4.

rI
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